Zero-divisor graphs of lower dismantlable lattices I

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On zero-divisor graphs of quotient rings and complemented zero-divisor graphs

For an arbitrary ring $R$, the zero-divisor graph of $R$, denoted by $Gamma (R)$, is an undirected simple graph that its vertices are all nonzero zero-divisors of $R$ in which any two vertices $x$ and $y$ are adjacent if and only if either $xy=0$ or $yx=0$. It is well-known that for any commutative ring $R$, $Gamma (R) cong Gamma (T(R))$ where $T(R)$ is the (total) quotient ring of $R$. In this...

متن کامل

A generalization of zero-divisor graphs

In this paper, we introduce a family of graphs which is a generalization of zero-divisor graphs and compute an upper-bound for the diameter of such graphs. We also investigate their cycles and cores

متن کامل

$C_4$-free zero-divisor graphs

‎In this paper we give a characterization for all commutative‎ ‎rings with $1$ whose zero-divisor graphs are $C_4$-free.‎

متن کامل

Zero-Divisor Graphs and Lattices of Finite Commutative Rings

In this paper we consider, for a finite commutative ring R, the wellstudied zero-divisor graph Γ(R) and the compressed zero-divisor graph Γc(R) of R and a newly-defined graphical structure — the zero-divisor lattice Λ(R) of R. We give results which provide information when Γ(R) ∼= Γ(S), Γc(R) ∼= Γc(S), and Λ(R) ∼= Λ(S) for two finite commutative rings R and S. We also provide a theorem which sa...

متن کامل

on zero-divisor graphs of quotient rings and complemented zero-divisor graphs

for an arbitrary ring $r$, the zero-divisor graph of $r$, denoted by $gamma (r)$, is an undirected simple graph that its vertices are all nonzero zero-divisors of $r$ in which any two vertices $x$ and $y$ are adjacent if and only if either $xy=0$ or $yx=0$. it is well-known that for any commutative ring $r$, $gamma (r) cong gamma (t(r))$ where $t(r)$ is the (total) quotient ring of $r$. in this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematica Slovaca

سال: 2017

ISSN: 0139-9918,1337-2211

DOI: 10.1515/ms-2016-0266